Developing a robust model predictive control architecture through regional knowledge analysis of artificial neural networks
نویسندگان
چکیده
Chemical processes are nonlinear. Model based control schemes such as model predictive control are highly related to the accuracy of the process model. For a highly nonlinear chemical system, it is clear to implement a nonlinear empirical model, such as artificial neural network model, should be superior to a linear model such as dynamic matrix model. However, unlike linear systems, the accuracy of a nonlinear empirical model strongly depends on its original data or training data based on how the model is built up. A regional-knowledge index is proposed in this study and applied in the analysis of dynamic artificial neural network models in process control. New input patterns that imply extrapolations and thus unreliable prediction by an artificial neural network model can be recognized from a significant decrease in the regional-knowledge index. To tackle the extrapolation problem and assure stability of the control system, we propose to run a neural adaptive controller in parallel with a model predictive control. A coordinator weights the outputs of these two controllers to make the final control decision. The present state of the controlled process and the model fitness to the present input pattern determine the weightings of the controller’s output. The proposed analysis method and the modified model predictive control architecture have been applied to a neutralization process and excellent control performance is observed in this highly nonlinear system. # 2003 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملRobust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers
In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...
متن کاملForecasting Gold Price Changes: Application of an Equipped Artificial Neural Network
The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...
متن کاملRejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کامل